AI at the Edge

Solving Real-World Problems with Embedded Machine Learning


AI at the Edge
AI at the Edge
Compliments of Edge Impulse

Book Details

Authors Daniel Situnayake, Jenny Plunkett
Publisher O'Reilly Media
Published 2023
Edition 1st
Paperback 512 pages
Language English
ISBN-13 9781098120191, 9781098120207
ISBN-10 1098120191, 1098120205
License Compliments of Edge Impulse

Book Description

Edge AI is transforming the way computers interact with the real world, allowing IoT devices to make decisions using the 99% of sensor data that was previously discarded due to cost, bandwidth, or power limitations. With techniques like embedded machine learning, developers can capture human intuition and deploy it to any target-from ultra-low power microcontrollers to embedded Linux devices.

This practical guide gives engineering professionals, including product managers and technology leaders, an end-to-end framework for solving real-world industrial, commercial, and scientific problems with edge AI. You'll explore every stage of the process, from data collection to model optimization to tuning and testing, as you learn how to design and support edge AI and embedded ML products. Edge AI is destined to become a standard tool for systems engineers. This high-level road map helps you get started.

- Develop your expertise in AI and ML for edge devices
- Understand which projects are best solved with edge AI
- Explore key design patterns for edge AI apps
- Learn an iterative workflow for developing AI systems
- Build a team with the skills to solve real-world problems
- Follow a responsible AI process to create effective products


This book is published as open-access, which means it is freely available to read, download, and share without restrictions.

If you enjoyed the book and would like to support the author, you can purchase a printed copy (hardcover or paperback) from official retailers.

Download and Read Links

Share this Book

[localhost]# find . -name "*Similar_Books*"


Machine Learning Yearning

Algorithms

AI is transforming numerous industries. Machine Learning Yearning, a free ebook from Andrew Ng, teaches you how to structure Machine Learning projects. This book is focused not on teaching you ML algorithms, but on how to make ML algorithms work. After reading Machine Learning Yearning, you will be able to: - Prioritize the most promising direction

Azure Machine Learning

Azure

This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and princ

Python Machine Learning Projects

Python

As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions - sometimes without final input from humans who may be impacted by these findings - it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers

A Practical Guide to TPM 2.0

Security

A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security is a straight-forward primer for developers. It shows security and TPM concepts, demonstrating their use in real applications that the reader can try out. Simply put, this book is designed to empower and excite the programming community to go out and do cool

Efficient Learning Machines

Analytics

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, cla

The AI Ladder

AI may be the greatest opportunity of our time, with the potential to add nearly $16 trillion to the global economy over the next decade. But so far adoption has been much slower than anticipated. With this practical report, business leaders will discover where they are in their AI journey and learn the steps they still need to take to implement an